CTCF cis-Regulates Trinucleotide Repeat Instability in an Epigenetic Manner: A Novel Basis for Mutational Hot Spot Determination
نویسندگان
چکیده
At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting "instability elements," and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF -- a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability.
منابع مشابه
The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence.
Alterations in the length (instability) of gene-specific microsatellites and minisatellites are associated with at least 35 human diseases. This review will discuss the various cis-elements that contribute to repeat instability, primarily through examination of the most abundant disease-associated repetitive element, trinucleotide repeats. For the purpose of this review, we define cis-elements ...
متن کاملCTCF Regulates Ataxin-7 Expression through Promotion of a Convergently Transcribed, Antisense Noncoding RNA
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder caused by CAG/polyglutamine repeat expansions in the ataxin-7 gene. Ataxin-7 is a component of two different transcription coactivator complexes, and recent work indicates that disease protein normal function is altered in polyglutamine neurodegeneration. Given this, we studied how ataxin-7 gene expression is regulated. The at...
متن کاملIdentification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae.
Trinucleotide repeats (TNRs) undergo frequent mutations in families affected by TNR diseases and in model organisms. Much of the instability is conferred in cis by the sequence and length of the triplet tract. Trans-acting factors also modulate TNR instability risk, on the basis of such evidence as parent-of-origin effects. To help identify trans-acting modifiers, a screen was performed to find...
متن کاملTranscriptionally Repressive Chromatin Remodelling and CpG Methylation in the Presence of Expanded CTG-Repeats at the DM1 Locus
An expanded CTG-repeat in the 3' UTR of the DMPK gene is responsible for myotonic dystrophy type I (DM1). Somatic and intergenerational instability cause the disease to become more severe during life and in subsequent generations. Evidence is accumulating that trinucleotide repeat instability and disease progression involve aberrant chromatin dynamics. We explored the chromatin environment in r...
متن کاملCis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.
Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming abili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Genetics
دوره 4 شماره
صفحات -
تاریخ انتشار 2008